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Abstract—Large-scale highway traffic forecasting approaches
are critical for intelligent transportation systems. Recently, deep-
learning-based traffic forecasting methods have emerged as
promising approaches for a wide range of traffic forecasting tasks.
These methods are specific to a given traffic network, however,
and consequently they cannot be used for forecasting traffic on
an unseen traffic network. Previous work has identified diffusion
convolutional recurrent neural networks, (DCRNN), as a state-of-
the-art method for highway traffic forecasting. It models the com-
plex spatial and temporal dynamics of a highway network using
a graph-based diffusion convolution operation within a recurrent
neural network. Currently, DCRNN cannot perform transfer
learning because it learns location-specific traffic patterns, which
cannot be used for unseen regions of a network or new geographic
locations. To that end, we develop TL-DCRNN, a new transfer
learning approach for DCRNN, where a single model trained
on a highway network can be used to forecast traffic on unseen
highway networks. Given a traffic network with a large amount
of traffic data, our approach consists of partitioning the traffic
network into a number of subgraphs and using a new training
scheme that utilizes subgraphs to marginalize the location-specific
information, thus learning the traffic as a function of network
connectivity and temporal patterns alone. The resulting trained
model can be used to forecast traffic on unseen networks. We
demonstrate that TL-DCRNN can learn from San Francisco
regional traffic data and can forecast traffic on the Los Angeles
region and vice versa.

I. INTRODUCTION

With steadily increasing urbanization in major cities across
the world, city planning and state-level department of trans-
portation organizations are now focusing heavily on traffic
management systems. The complexity of traffic management
has, in the past, been too high a bar for most regional-
level control-oriented technology solutions. Signal control,
variable messaging signs, and traffic metering onto highways
have managed at a localized level in the past and sufficed.
With increased densities of vehicles on the road network,
however, these solutions are sometimes falling short; and
traffic is having a detrimental impact on area economics,
productivity, emissions, and quality of life. As an example,
the costs associated with congestion in California have been
estimated to be on the order of $29B, with approximately
$1.7B attributed to each of the Los Angeles (LA) and San
Francisco (SFO) regions alone [1].

New data collection opportunities and advanced computing
capabilities are beginning to emerge in transportation systems.

Most of these are being deployed in a “corridor environment,”
where congested sections of major highways are instrumented
to collect a variety of traffic measurements. These measure-
ments are fed back to transportation management centers
(TMCs) and decisions systems that, with the approval of
humans in the loop, provide timely alerts to authorities and
control traffic with cost measures that provide the best overall
outcomes for the corridor, such as congestion metrics, fuel
efficiency, and emissions. Beginning in the 1980s, TMCs have
spread widely across the United States, with over 280 TMCs
operating in the nation today. The decision systems in use
by TMCs are a key component of an efficiently operating
transportation system and the subject of significant research.

In parallel with the emerging data collection and computing
capabilities afforded to TMCs, techniques to better forecast
traffic conditions—a foundational component of a TMC’s
decision system—are also seeing significant improvements to
the state of the art. Recently, deep learning methods such as
deep belief networks [2] and stacked autoencoders [3], and
recurrent neural network (RNN) variants [4] have emerged as
promising approaches because of their ability to capture the
long-term temporal dependencies. However, they do not model
the spatial dependencies of highway network. Convolutional
neural networks with recurrent units have been investigated
to model the spatial temporal dynamics of traffic, where the
spatial temporal traffic data are converted to a sequence of
images and sequence-to-sequence learning is performed on
the images [5]. These methods pose significant limitations,
however, because they violate the fundamental non-Euclidean
property of the network data. While the nearby pixels are
correlated in images, nearby locations in a highway can
be different because they can be on the opposite side of
the highway (for example, one going into the city and one
coming out of the city). To that end, Diffusion Convolutional
Recurrent Neural Network (DCRNN) [6] has been proposed
to overcome the challenges of spatiotemporal modeling of
highway traffic networks. It is a state-of-the-art graph-based
network that captures spatial correlation by a diffusion process
on a graph and temporal dependencies using a sequence-to-
sequence RNN.

The high performance of the deep learning models including
DCRNN can be attributed to the availability of significant
amounts of historical data for training. While these deep
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learning models can be transformational for the performance
of a transportation decision system, many U.S. states do
not have the long-standing data collection infrastructure that
can provide such historical data for training, especially if
these techniques are ultimately to be applied to both arterial
roadways and highways. Moreover, the dynamic nature of
transportation systems dictates that even for systems with
highly instrumented corridors, other areas of emerging con-
gestion may not have sufficient instrumentation or historical
data. Relatedly, while several new data collection infrastruc-
tures have been deployed in various states, the time required
to accumulate sufficient data for training can hinder model
development and deployment. Furthermore, in the absence
of an installed data collection infrastructure or areas where
sensors are not as geospatially dense, probe data collected
from GPS and cellphones can be used as a proxy to measure
key traffic metrics such as speed. In these cases, model training
can become difficult because historical data either may be
unavailable or cannot be accumulated for privacy concerns.
Furthermore, even if the historical data is available within
a specific region, TMCs have limited computing capability
and expertise to train deep learning models. These challenges,
in the context of the improved traffic forecasting capabilities
afforded by the DCRNN approach, suggest that identifying
methods to deploy models trained in areas rich in historical
data to areas with a paucity of data are especially promising.
Additionally, if successful, these methods can allow states,
cities, and municipalities to more quickly develop improved
traffic forecasting capabilities with a significantly smaller
infrastructure investment. Expanding the benefits from just
TMCs, many other intelligent transportation applications, such
as dynamic routing for freight traffic to congestion pricing
based on forecast traffic conditions, could also benefit from
localized models trained on data sets from more data-rich
locations.

Transfer learning is a promising approach to circumvent
possible data paucity, training, and deployment challenges.
In this approach, a model trained for one task is reused
and/or adapted for a related task. While transfer learning is
widely used for image classification, sentiment analysis, and
document classification in the text domain [7], it has received
less attention in the traffic forecasting domain. Using transfer
learning methods for graph-based highway traffic forecasting
such as DCRNN is not a trivial task. The reason is that
graphs have complex neighborhood correlations, as opposed
to images, which have relatively simple local correlations
since they are samples from the same Euclidean grid domain
[5]. To address these issues, we have developed TL-DCRNN,
a DCRNN with transfer learning capability. Given a large
highway network with historical data, TL-DCRNN partitions
the network into a number of regions. At each epoch, region-
specific graphs and the corresponding time series data are
used to train a single encoder-decoder model using minibatch
stochastic gradient descent. Consequently, the location-specific
traffic patterns are marginalized, and the model tries to learn
the traffic dynamics as a function of graph connectivity and

temporal pattern alone. We conduct extensive experiments
on the real-world SFO and LA traffic dataset from the
Performance Measurement System (PeMS) administered by
the California Department of Transportation (Caltrans). Our
contributions are as follows.
• We develop a new graph-partitioning-based transfer learn-

ing approach for DCRNN by marginalizing location-
specific information to model the traffic dynamics as a
function of temporal patterns and network connectivity.

• We demonstrate that our proposed transfer learning
method can learn from SFO region data and forecast for
the LA region and vice versa.

II. PROBLEM SETUP

The short-term highway traffic forecasting problem can be
defined on a weighted directed graph G = (V, E ,A), where V
is a set of N nodes that represent highway sensor locations, E
is the set of directed edges connecting these nodes, and A ∈
RN×N is the weighted adjacency matrix that represents the
connectivity between the nodes in terms of highway network
distance. The traffic state at time step t is represented as a
graph signal Xt ∈ RN×F on the graph G, where F is the
number of traffic metrics of interest (e.g., traffic flow, traffic
speed, and density that change over time). Given H historical
observations of the traffic state X = (Xt1 , Xt2 , ..., XtH ) ∈
RH×N×F and P observations of the current traffic state X =
(Xt1 , Xt2 , ..., XtP ) ∈ RP×N×F on the graph G, where H >>
P , the goal is to develop a model that can forecast the traffic
state of the next Q time steps on all nodes of the graph, Ŷ =
(X̂tP+1

, X̂tP+2
, ..., X̂tP+Q

) ∈ RQ×N×F .
Let G′ = (V ′, E ′,A′) be the graph with N ′ nodes that

represents the highway network for which we do not have
the historical time series data. Given P observations of the
current traffic state X ′ = (X ′t1 , X

′
t2 , ..., X

′
tP ) ∈ R

P×N ′×F on
the graph G′, the goal is to develop a model that can forecast
the traffic state of the next Q time steps on all nodes of the
graph G′, Ŷ ′ = (X̂ ′tP+1

, X̂ ′tP+2
, ..., X̂ ′tP+Q

) ∈ RQ×N ′×F .
In the context of Pan and Yang’s transfer learning classifi-

cation [8], our problem setup corresponds to the transductive
transfer learning setting, where the source and target tasks are
the same (short-term traffic forecasting on graphs), while the
source and target domains (unseen regions of the highway
network) are different but related.

III. DIFFUSION CONVOLUTION RECURRENT NEURAL
NETWORK (DCRNN)

DCRNN is a state-of-the-art method for short-term traf-
fic forecasting [6]. It is an encoder-decoder neural network
architecture that performs sequence-to-sequence learning to
carry out multistep traffic state forecasting. A simple and
powerful variant of recurrent neural networks, called gated
recurrent units (GRUs) [4], is used to design the encoder-
decoder architecture. The matrix multiplications in GRUs is
replaced with a diffusion convolution operation to make the
DCRNN cell. In an L layered DCRNN architecture, each layer
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consists of R number of DCRNN cells. The DCRNN cell is
defined by the following set of equations:

rt = σ(WrFG [Xt, ht−1] + br)
ut = σ(WuFG [Xt, ht−1] + bu)
ct = tanh(WcFG [Xt(rt � ht−1)] + bc)
ht = ut � ht−1 + (1− ut)� ct,

where Xt and ht denote the input and final state at time
t, respectively; rt, ut, and ct are the reset gate, update
gate, and cell state at time t, respectively; FG denotes the
diffusion convolution; and Wr,Wu, andWc are parameters
for the corresponding filters. The diffusion convolution FG
operation over the input graph signal X and convolution filter
W , which learns the representations for graph-structured data
during training, is defined as

WFGX =

K−1∑
d=0

(WO(D
−1
O A)

d +WI(D
−1
I A)

d)X, (1)

where K is a maximum number of diffusion steps; D−1O A and
D−1I A are transition matrix of the diffusion process and the
reverse one, respectively; DO and DI are the in-degree and
out-degree diagonal matrices, respectively; and WO and WI

are the learnable filters for the bidirectional diffusion process.
The in-degree and out-degree diagonal matrices provide the
capability to capture the effect of the upstream as well as
the downstream traffic. The driving distances between sensor
locations are used to build the adjacency matrix A; a Gaussian
kernel and a threshold τ parameter are used to sparsify A.

During the training of DCRNN, a minibatch of time series
sequence, each of length P from historical time series data
X , is given as an input to the encoder. The decoder receives a
fixed-length hidden representation of the data from the encoder
and forecasts the next Q time steps for each sequence in
the minibatch. The layers of DCRNN are trained by using
backpropagation through time. DCRNN learns the weight
matrices in Equation 1 by minimizing the mean absolute error
(MAE) as a loss function.

IV. TRANSFER LEARNING DCRNN
Similar to the convolution operation on images, the diffusion

convolution FG on a graph is designed to capture patterns
that are local to a given node. This operation learns the
latent representation of a diffusion process that starts from
a given node to the neighboring connected node, and it is
particularly suitable to capture the local diffusion behavior of
traffic dynamics. From Equation 1, we can see that DCRNN
becomes location-specific because of the presence of the
weighted adjacency matrix A in the diffusion step. As a result,
the convolution filter W is dependent on the given A, which is
kept constant throughout the training process. Our hypothesis
is that if we change the graph A and the corresponding time
series data during the training process, then we can make
diffusion convolution filters generic as opposed to location-
specific. Consequently, the resulting model becomes more
generalizable and can be used to forecast traffic on unseen
graphs.

Fig. 1: TL-DCRNN partitions the large highway network with
historical data into a number of subgraphs using a graph
partitioning method. These subgraphs are used to train the
the encoder-decoder architecture with diffusion convolution
recurrent neural network cells. Given an unseen graph during
inference, TL-DCRNN partitions the graph and uses the trained
model for short-term traffic forecasting.

A high-level overview of the proposed TL-DCRNN is shown
in Figure 1. Given the source graph G with the historical
data X , TL-DCRNN first partitions it into a m subgraphs
with equal numbers of n nodes using a graph partitioning
method that takes the weighted adjacency matrix A of G as
input. Let Gp = {G1p , . . . ,Gmp } = {(V1

p , E1p ), . . . , (Vm
p , Emp )},

and Xp = {X1
p , . . . , X

m
p } be the set of p subgraphs and

their corresponding time series data. The minibatch stochastic
gradient update of TL-DCRNN is the same as that of DCRNN,
where for a given Gip, a batch of input and output time
series sequences from Xi

p is used to compute the errors and
update the weights of the encoder and decoder architecture by
backpropagation through time. The minibatch is constructed
to preserve time ordering, a common approach in sequence-
to-sequence time series modeling. The subgraph epoch for
a given subgraph Gip uses all the data in Xi

p as a series of
minibatches to update the parameters of the encoder decoder
architecture. The epoch runs m subgraph epochs for each
subgraph Gip ∈ Gp.

For inference, TL-DCRNN partitions the unseen target graph
G′ into m′ subgraphs {G′1p, . . . ,G′

m′

p } such that each subgraph
G′jp has n nodes using the graph partitioning method. Given
the current state of the traffic as a sequence of P time series
on a subgraph G′jp, the TL-DCRNN trained model forecasts
the traffic for the next Q time steps.

From the learning perspective, the key difference between
DCRNN and TL-DCRNN is that the former learns the location-
specific spatiotemporal patterns on a static graph whereas
the latter marginalizes the location-specific information and
learns the spatiotemporal patterns across multiple subgraphs.
Consequently, the model weights are trained in such way that
it can provide generalization to similar but unseen graphs, a
capability that can be used for forecasting on a unseen highway
network.
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Note on graph partitioning: Several graph partitioning
methods exist that can be leveraged for partitioning the graphs
in the training and inference phase. Typically, these methods
cannot partition the graph into equal-sized subgraphs, but they
can give partitions of similar sizes. In these cases, we can find
the largest size of the graph and perform zero padding for all
other subgraphs. The unseen graph G′ does not need to be as
large as G. For a given G′, when N ′ modulo n is relatively
smaller than n, one can use zero padding for the subgraph
whose size is smaller than n. When the modulo value is much
smaller than n, the method of subgraphs with overlapping
nodes [9] can be adopted, where a subgraph includes nodes
from neighboring geographically close subgraphs.

Assumptions and implications: We assume that the graph G
represents a large highway network such that it is amenable to
graph partitioning and, in particular, the partitioned subgraphs
expose a range of traffic dynamics. Otherwise, the transfer
learning ability of the method will suffer. Furthermore, the
transductive transfer learning assumptions of related domain
discussed in [8] apply to our method. The highway traffic data
can be seen as samples generated from a high-dimensional
distribution parameterized by highway vehicle composition,
infrastructure, and entry exit dynamics, among others. Given
a completely different distribution sample, the model will not
be able to perform transfer learning with high accuracy. For
example, a model that is trained on certain regions of Califor-
nia will not generalize to highway network traffic forecasting
in completely different regions of the world such as China and
India, where the highway vehicle composition, infrastructure,
and traffic dynamics can be dramatically different.

V. EXPERIMENTAL RESULTS

For the experimental evaluation, we used Cooley, a GPU-
based cluster at the Argonne Leadership Computing Facility.
It has 126 compute nodes, each node consisting of two 2.4
GHz Intel Haswell E5-2620 v3 processors (6 cores per CPU,
12 cores total), one NVIDIA Tesla K80 (two GPUs per node),
384 GB of RAM per node, and 24 GB GPU RAM per node (12
GB per GPU). The nodes are interconnected via an InfiniBand
fabric. The software stack comprises Python 3.6.0, TensorFlow
1.3.1, NumPy 1.16.3, Pandas 0.19.2, and HDF5 1.8.17.

To generate subgraphs for the TL-DCRNN training, we use
the multilevel k-way partitioning algorithm from Metis 5.1.0
[10]. This algorithm creates roughly k equal-sized partitions.
Because of the fixed dimension of the input and the adjacency
matrix used in the TL-DCRNN, all subgraphs should contain
an equal number of nodes. We added rows and columns filled
with zeros to make all the inputs and the adjacency matrices
exactly equal in size.

We used the same set of hyperparameter values for all the
training. These hyperparameter values were obtained from
the open-source DCRNN implementation [11]: batch size,
64; filter type, random walk; maximum diffusion steps, 2;
number of RNN layers, 2; number of RNN units per layers,
16; threshold max_grad_norm to clip the gradient norm to
avoid exploring gradient problem of RNN, 5; initial learning

TABLE I: Datasets used for the experiments. The source set
(src) contains subgraphs from LA (or SFO), and the target set
(tgt) contains subgraphs from SFO (or LA). The timelines
of training, validation, and testing are given in the description.

Dataset Description
Source subgraphs of LA (or SFO)

train-src ≈36 weeks of time series data (1 Jan.
2018 to 13 Sept. 2018)

val-src ≈5 weeks of time series data (13
Sept. 2018 to 20 Oct. 2018)

test-src ≈10 weeks of time series data (20
Oct. 2018 to 31 Dec. 2018)

target subgraphs of SFO (or LA)
train-tgt ≈36 weeks of time series data (1 Jan.

2018 to 13 Sept. 2018)
val-tgt ≈5 weeks of time series data (13

Sept. 2018 to 20 Oct. 2018)
test-tgt ≈10 weeks of time series data (20

Oct. 2018 to 31 Dec. 2018)

rate, 0.01; and learning rate decay, 0.1. We used speed as
the traffic forecasting metric. For training and inference, the
forecast horizons were set to 60 minutes: the encoder gets 60
minutes (12 observations, one for every five minutes) of traffic
data (time and speed), and the decoder outputs the forecasts
for the next 60 minutes (12 predictions, one for every five
minutes). Mean absolute error (MAE) was used as the training
loss and test accuracy metric for comparing different methods.

To compare the MAE values obtained from two models M1
and M2, we used a paired one-sided Wilcoxon signed-rank
test with null hypothesis that the median difference between
the two MAE distributions is greater than or equal to zero
(MAE value from M2 is lower than or similar to that of M1).
We compute the p−value from the test and reject the null
hypothesis when the p-value is less than 0.05 (at a confidence
level of 5%) in favor of the alternative that the median is less
than zero (MAE value from M1 is lower than those of M2).

The source code for TL-DCRNN along with the dataset
and the scripts to reproduce the experiments and results are
available at https://github.com/tanwimallick/TL-DCRNN.

A. Transfer learning between LA and SFO regions

Here, we compare TL-DCRNN with DCRNN (without trans-
fer learning) and show that the proposed transfer learning
approach is effective.

We used the PeMS dataset [12] for the LA and SFO regions.
It has 2,716 and 2,382 traffic sensor locations in LA and SFO
for the entire year of 2018, respectively. Besides the time
series data, PeMS captures spatial information such as the
latitude and longitude of each sensor location. We computed
the pairwise driving distances between the sensor locations
using the latitude and longitude and built the adjacency matrix
using a thresholded Gaussian kernel [6]. From one year of
the time series data, we used 70% of the data (≈36 weeks)
for training, 10% (≈5 weeks) for validation, and 20% (≈10
weeks) for testing. Consequently, we have six datasets. See
Table I for the dataset summary and nomenclature adopted.

For TL-DCRNN, we partitioned the highway traffic network
of LA and SFO into 15 and 13 subgraphs, respectively, to
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Fig. 2: Distributions of MAE values obtained by D-DCRNN,
D-TL-DCRNN, TL-DCRNN, and DCRNN on the LA region.

Fig. 3: Distributions of MAE of D-DCRNN, TL-DCRNN, and
DCRNN with respect to coefficient of variation on the LA
region. The numbers above show the number of observations
(nodes) within the COV interval.

keep number of nodes per partition (≈ 180) almost equal
across the two datasets. We trained the TL-DCRNN models on
train-src of LA (SFO) and tested them on test-tgt
of SFO (LA), respectively. We compared our approach to
DCRNN without transfer learning, where we trained it on
the SFO (LA) dataset and applied it directly to forecast on
the LA (SFO) dataset. Because of the fixed dimension of the
input and adjacency matrix, we added rows and columns filled
with zeros in the SFO dataset to make the inputs and the
adjacency matrices equal in both the datasets. Moreover, as a
best-case scenario, we included the DCRNN and TL-DCRNN
model trained on SFO (LA) to forecast the traffic on SFO
(LA). We call these models D-DCRNN and D-TL-DCRNN,
where D stands for direct learning. Note that both DCRNN and
D-DCRNN operate on the whole graph (without subgraphs).

Figure 2 shows the distributions of MAE values of the D-
DCRNN, D-TL-DCRNN, TL-DCRNN, and DCRNN models
on the LA dataset. We can observe that TL-DCRNN out-

Fig. 4: Distributions of MAE of D-DCRNN, D-TL-DCRNN,
TL-DCRNN, and DCRNN on the SFO region.

performs DCRNN. We found that the MAE values obtained
by TL-DCRNN are lower than those obtained by DCRNN
on 2,497 out of 2,717 nodes. The observed differences were
significant according to a paired one-sided Wilcoxon signed-
rank test, which showed a p−value of 0.00 for the TL-DCRNN
and DCRNN comparison. To get further insight, we plot the
MAE values with respect to the coefficient of variation (COV).
This is given by the ratio of the standard deviation and the
mean of the time series for each node in test-tgt. This
metric can be used as a proxy to measure the traffic dynamics:
smaller values indicate that the speed is stable (less dynamic),
and larger values mean that a wide range of speed values has
been observed (more dynamic). The plot of the MAE values
with respect to COV shows how forecasting error changes
with the increasing traffic dynamics. We binned the COV into
5 buckets 0.0 to 0.05, 0.05 to 0.10, 0.10 to 0.20, 0.20 to
0.30, 0.30 to 0.40 and 0.40 and above. The results are shown
in Figure 3. We can observe that the differences between
TL-DCRNN and DCRNN increase as a function of COV. The
observed differences are rather small when COV values are
less than 0.2; however, they become significant as the COV
values become larger.

Figure 4 shows the results obtained on SFO. We can observe
a similar trend. The median of MAE values are 2.18, 2.23,
2.38, and 2.43 for D-DCRNN, D-TL-DCRNN, TL-DCRNN,
and DCRNN models, respectively. We found that the MAE
values obtained by TL-DCRNN are lower than those obtained
by DCRNN on 1,495 out of 2,383 nodes. The observed differ-
ences are significant according to a paired one-sided Wilcoxon
signed-rank test, which showed a p−value of 5.02 × 10−68

for TL-DCRNN and DCRNN comparison. Figure 5 shows the
distributions of MAE as a function of COV intervals. The
distributions show that MAE values obtained by TL-DCRNN
are lower than DCRNN in 4 out of the 6 COV intervals. The
number of nodes with COV larger than 0.3 is small (36) in
SFO dataset. Hence, the differences between the three methods
were not significant.

Figure 6 shows the distribution of pairwise MAE differences
between TL-DCRNN vs D-DCRNN (direct learning, best case)
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Fig. 5: Distributions of MAE of TL-DCRNN, DCRNN, and
D-DCRNN with respect to coefficient of variation on the SFO
region. The numbers above each box show the number of
observations (nodes) in the distribution.

Fig. 6: Pairwise MAE differences between TL-DCRNN and
D-DCRNN and with respect to COV values computed on
test-tgt on LA and SFO regions. The numbers above show
the number of observations (nodes) within the COV interval.

as a function of COV intervals for SFO and LA datasets.
The MAE values obtained by D-DCRNN are not significantly
better than that of TL-DCRNN for less dynamic traffic sensors.
On LA and SFO datasets, the two methods achieve comparable
results up to COV values of 0.30 and 0.10 (also see Figures
3 and 5). These results imply that when the traffic is less
dynamic, transfer learning will be as good as the direct
learning. On LA data, we can see a clear trend in which
an increase in the COV values increases the MAE difference
values and D-DCRNN forecasts become more accurate than
that of TL-DCRNN. This is because D-DCRNN models trained
and tested on the same graph captures the location-specific
traffic dynamics better than TL-DCRNN that was trained
on the SFO dataset and tested on LA. We can observe a

TABLE II: Accuracy metrics comparison of TL-DCRNN with
other short-term traffic forecasting approaches.

Method MAE RMSE MAPE
Training and testing on PEMS-BAY

ARIMA [13] 3.38 6.50 8.30%
SVR [14] 3.28 7.08 8.00%
FNN [15] 2.46 4.98 5.89%
FC-LSTM [4] 2.37 4.96 5.70%
STGCN [16] 2.49 5.69 5.79%
DCRNN [6] 2.07 4.74 4.90%
GMAN [17] 1.86 4.32 4.31%

Training on LA and testing on PEMS-BAY
TL-DCRNN 2.13 ± 1.09 5.23 ± 2.29 5.55 ± 4.34

similar trend in the SFO dataset as well. These results show
that for locations with more traffic dynamics, learning the
location-specific spatial-temporal patterns is critical for higher
accuracy.

In SFO dataset, the significant drop in the differences for
COV larger than 0.4 can be attributed to the small number
(2) of nodes. Moreover, the number of nodes with COV larger
than 0.3 is rather small (36) when compared with the LA
dataset. This can be attributed to the fact that SFO traffic is
less dynamic when compared with LA traffic.

B. Comparison with other methods

Here, we present our comparison of TL-DCRNN with other
state-of-the-art short-term traffic forecasting methods under
two different settings on a commonly used PEMS-BAY bench-
mark dataset and demonstrate the effectiveness of TL-DCRNN.

1) TL-DCRNN vs direct learning: We compared
TL-DCRNN with a number of methods proposed in
the literature: (1) autoregressive integrated moving average
(ARIMA) [13], which considers only the temporal relationship
of the data; (2) support vector regression (SVR) [14], a linear
SVR for forecasting; (3) a feed-forward neural network
(FNN) [15] with two hidden layers; (4) fully connected
LSTM (FC-LSTM) [4] with encoder-decoder architecture;
(5) a spatiotemporal graph convolutional network (STGCN)
[16], which combines graph convolutions and gated temporal
convolutions; (6) a diffusion convolutional recurrent neural
network (DCRNN) [6], as discussed in Section III; and (7)
a graph multiattention network (GMAN) [17], an encoder-
decoder architecture with multiple spatiotemporal attention.
All the methods were trained and tested on the PEMS-BAY
dataset, which is a widely used benchmark for short-term
traffic forecasting methods. This dataset has 325 sensors in
the Bay Area with 6 months of time series data ranging from
Jan. 1, 2017, to June 30, 2017. We used 70% of the data for
training (Jan. 1, 2017, to May 7, 2017), 10% of the data for
validation (from May 7, 2017, to May 25, 2017), and 20% of
the data for testing (from May 25, 2017, to June 30, 2017).
We used the accuracy results reported in [17], where GMAN
results are compared with other methods. The TL-DCRNN
model is trained on LA dataset and tested on the PEMS-BAY
dataset. We used the same timeline for training, validation,
and testing as the PEMS-BAY dataset.

In addition to MAE, we used root mean square error
(RMSE) and mean absolute percentage error (MAPE) metrics
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TABLE III: Transfer learning performance comparison of
TL-DCRNN and other traffic forecasting methods. TL-DCRNN
achieves the best performance with all three metrics.

Models MAE RMSE MAPE
STGCN [16] 6.53 ± 2.69 10.07 ± 3.47 13.31 ± 6.38 %
FC-LSTM [4] 4.69 ± 1.79 8.48 ± 3.17 12.32 ± 8.78 %
GMAN [17] 4.05 ± 1.56 7.57 ± 2.51 8.5 ± 4.58 %
DCRNN [6] 3.3 ± 1.24 6.91 ± 2.19 8.21 ± 5.57 %
TL-DCRNN 2.13 ± 1.09 5.23 ± 2.29 5.55 ± 4.34 %

to compare the accuracy of the models. The results are shown
in Table II. Although TL-DCRNN is trained on LA dataset,
it achieves MAE (2.13 ± 1.09), RMSE (5.23 ± 2.29), and
MAPE (5.55 ± 4.34) distribution values that are superior to
ARIMA, SVR, FNN, FC-LSTM, and STGCN. Despite the fact
that DCRNN and GMAN were trained on the PEMS-BAY
dataset, their accuracy metrics were not significantly better
than those obtained by TL-DCRNN trained on the LA dataset.

2) Comparison between transfer learning models:
We trained STGCN, FC-LSTM, GMAN, DCRNN, and
TL-DCRNN on the LA dataset and tested on the PEMS-BAY
dataset. These two datasets have 6 months of time series data,
and we used the same timeline as described in V-B1. The
models were trained and validated on 70% and 10% of the
LA dataset; 20% PEMS-BAY dataset was used for evaluation.
The LA dataset has 2,683 sensors location, and the PEMS-
BAY dataset has 325 sensors location. We partitioned the
LA highway traffic network into 9 partitions and used zero
padding to make all the adjacency matrices of the size 325.
For STGCN, FC-LSTM, GMAN, and DCRNN, we trained
9 partition-specific models for each method. These models
were evaluated on the validation dataset. For each method,
we selected the model with the lowest validation MAE and
evaluated on the PEMS-BAY dataset. For TL-DCRNN, we
trained a single model that utilizes all 9 subgraphs of LA
dataset and evaluated it on the PEMS-BAY dataset. We did not
include ARIMA, SVR, and FNN for the comparison because
they can learn individual time series data but are unable to
learn the entire network.

The results are shown in Table III. We observe that
TL-DCRNN achieves MAE, RMSE, and MAPE distribution
values, which are better than STGCN, FC-LSTM, GMAN, and
DCRNN. The observed differences were significant according
to a paired one-sided Wilcoxon signed-rank test, which showed
p−value of 0.00 for for all the pairwise comparisons. The
MAE values obtained by TL-DCRNN are lower than those
obtained by STGCN, FC-LSTM, GMAN, and DCRNN on
323, 320, 321, and 304 out of 325 nodes, respectively. Simi-
larly, the RMSE values obtained by TL-DCRNN are lower than
those obtained by STGCN, FC-LSTM, GMAN, and DCRNN
on 310, 295, 313, and 270 out of 325 nodes, respectively.
Moreover, the MAPE values obtained by TL-DCRNN are
lower than those obtained by STGCN, FC-LSTM, GMAN,
and DCRNN on 308, 302, 300, and 294 out of 325 nodes,
respectively.

VI. RELATED WORK

Graph-convolution-based forecasting models have shown a
significant improvement in traffic forecasting tasks over clas-
sical approaches such as ARIMA and Kalman filtering, which
are not effective in capturing complex spatial and temporal
correlations [13]. Cui et al. [18] developed a graph convolu-
tional long short-term memory network. They used the graph
convolution operation inside the LSTM cell with regularization
approaches. Yu et al. [16] integrated graph convolution and
gated temporal convolution in a spatiotemporal convolutional
block for traffic forecasting. Li et al. [6] proposed a DCRNN
method that models traffic state as a diffusion process on a
graph and used it within a GRU cell. All these methods,
however, cannot perform forecasting on unseen graphs because
they learn location-specific traffic dynamics and require the
same highway network for training and inference.

The prior work on transfer learning for short-term traffic
forecasting is sparse. Wang et al. [19] proposed an image-
based convolutional LSTM network to perform transfer learn-
ing for crowd flow prediction from a data-rich city to a data-
scarce city. The method first learns a matching function using
Pearson correlation to find a similar source city for each
target city. During training of the network the method tries
to minimize the hidden representations of the target region
and its matched source region inside the loss function. This
approach does not incorporate multiple nodes, however, and
does not take into account the spatial graph dependency.
Recently, Yao et al. [20] proposed a metalearning method
for traffic volume and water quality prediction. This approach
captures knowledge from multiple nodes. It uses an image-
based convolutional LSTM network to train on multiple source
nodes and uses those trained weights for prediction on the
target nodes. The method uses spatial-temporal memory to
store representation of diffident regions of the source cities.
The regions are found by k−means clustering on the averaged
24-hour patterns of each region, and region-specific weights
stored in the memory are utilized for prediction via an attention
mechanism. Krishnakumari et al. [21] developed a method that
first clusters the feature vectors obtained from the pretrained
image-based convolutional network and then uses the cluster
to predict one-step forecast for the similar target location
using an ensemble of multiple models such as multilayer
perceptron, random forest, K-nearest neighbor, support vector
machine (SVM), and Gaussian process. Xu1 et al. [22] and
Lin [23] conducted preliminary studies for traffic prediction
using cross city transfer leaning using SVM and dynamic time
warping, respectively. Fouladgar et al. [24] proposed a transfer
learning method using an image-based convolutional network
and LSTM for traffic forecasting in case of congestion. None
of these methods use graph convolution to model the spatial
dependencies, and they cannot be applied directly to short-
term highway forecasting.
TL-DCRNN is inspired by the cluster-GCN [25] training,

where a graph convolution network training is proposed for
learning tasks on large graph classification problems. In this
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approach, each batch for stochastic-gradient-descent-based
training uses samples of subgraphs of the original graph.
Cluster-GCN is built for node and link classification on graphs,
however, and it cannot be used to model graph diffusion and
temporal characteristics of the traffic data.

VII. CONCLUSION AND FUTURE WORK

We developed TL-DCRNN, a graph-partitioning-based trans-
fer learning approach for a diffusion convolution recurrent
neural network to forecast short-term traffic on a highway
network. TL-DCRNN partitions the data-rich source highway
network into a number of regions and learns the spatiotemporal
traffic dynamics as a function of the traffic state and the
network connectivity by marginalizing the location-specific
patterns. The trained model from TL-DCRNN is then used to
forecast traffic on unseen regions of the highway network.
We demonstrated the efficacy of TL-DCRNN by showing
that the approach can perform transfer learning between LA
and SFO regions. TL-DCRNN outperformed a number of
methods developed for traffic forecasting despite being applied
to a region unseen in training, whereas the other methods
were both trained and applied on the same region. Moreover,
TL-DCRNN outperformed all state-of-the-art traffic forecasting
methods in a transfer learning setting. Allowing practitioners
to apply data-driven methods trained on datasets collected
elsewhere is a transformative capability, enabling a wide range
of transportation system operations and functions to operate
more efficiently and sustainably through improved forecasting
at reduced infrastructure development and data acquisition
costs.

Our future work will include (1) deployment strategies
for traffic management systems, which can vary across the
country; (2) transfer learning capability for alternate data
sources such as mobile device data to relieve the cost of
installing infrastructure sensors and to investigate performance
for non-highway applications (i.e., arterials); (3) metalearning
for graph-based transfer learning for highway networks; and
(4) network structural implications for extending this approach
beyond highway implementations, which may include charac-
terizing how graph constraints are encoded in the DCRNN.
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