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Abstract—We use the RGB-D technology of Kinect to control
an application with hand-gestures. We use PowerPoint for test.
The system can start/end PPT, navigate between slides, capture or
release the control of the cursor, and control it through natural
gestures. Such a system is useful and hygienic in the kitchen,
lavatories, hospital ICUs for touch-less surgery, and the like.

The challenge is to extract meaningful gestures from contin-
uous hand motions. We propose a system that recognizes isolated
gestures from continuous hand motions for multiple gestures
in real-time. Experimental results show that the system has
96.48% precision (at 96.00% recall) and performs better than
the Microsoft Gesture Recognition library for swipe gestures.

I. INTRODUCTION

In the context of Human-Computer Interaction (HCI),
gesture is used to control a machine much in the same way we
communicate with other human beings. Traditional gesture-
based Natural User Interfaces (NUI) using RGB images or
videos are now being taken over by low-cost RGB-D technol-
ogy like Microsoft Kinect. Hence, we develop several gesture
detection algorithms for Kinect skeletal models to control a
Microsoft PowerPoint presentation as a target. The algorithms
can also be used for hands-free control of touch-less surgery,
immersive image navigation, emotive communication, auto-
piloting, and the like. Any real-time gesture recognition system
needs to address the following issues that we handle here:

Gesture Spotting is the detection of meaningful gestural pat-
terns (computing the start and the end points) from continuous
hand motions for which Lee & Kim [9] built a complex system.
We use various fixed-length gestures recognized by machine
learning algorithms as an alternative to gesture spotting.

Gestures need to accommodate inter-variability and intra-
variability, as the same gesture can vary in shape as well as
duration. Inter-variability refers to the differences when mul-
tiple people perform the same gesture, while intra-variability
refers to the differences when a single individual performs
the same gesture. We take care of variabilities through vector
quantization and learning models.

Rejecting a non-gesture is usually harder than recognizing a
gesture because there could potentially be infinite number of
unintended gestures to eliminate. Wilcox & Bush [18] use
Garbage or Filler Model to handle such gestures. Training
such a model is a difficult task. For this, we characterize every
gesture and use the Threshold Model [9] to calculate the like-
lihood threshold of an input pattern and build a confirmation
mechanism for the provisionally matched gesture patterns.

In the paper, Section II discusses prior work. We describe
the design of the NUI in Section III. Section IV discusses
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the gesture recognition system with choice of features and
classifiers. In Section V, we explain the experiments, present
the results and compare the performance of the system with the
Microsoft Gesture Library [10]. We conclude in Section VI.

II. RELATED WORK

Gesture recognition has been applied in various appli-
cation areas such as recognizing sign language [11], [16],
HCI [11], [8], robot control [11], smart surveillance [11], lie
detection [11], and visual environments manipulation [11].
In the last decade, several gesture interfaces [13] have been
developed. For any system the first step is to collect the data
for the specific task. Broadly two different technologies have
been used so far to capture data:

Vision Based Approaches use one or more video cameras to
record movements. Features such as shape, texture, motion,
and color as extracted from the video are used to analyse a
gesture [5]. These approaches are simple but many challenges
like complex background, lighting variation, and skin color ob-
jects with the hand object exist here. Hand detection is a major
issue here. Hence, marked gloves or coloured markers [7] are
used for tracking the hand, the palm and fingers.

Sensor-Gloves Based Approaches use wearable sensors in
gloves [3] for capturing hand positions and motion. They can
easily provide exact coordinates of palm, fingers’ location,
orientation, and hand configurations. But it hinders naturalness.

RGB-D sensors like Kinect improves the above by using IR
and tracking the human skeleton. Using joint-points of skele-
tons, the gestures are recognized by mathematical models like
Hidden Markov Model (HMM) [11], [14], [19], or Finite State
Machine (FSM) [11], [6], or soft computing methods like fuzzy
clustering [20] and Artificial Neural Network (ANN) [17]. We
use multiple HMM’s to classify gestures.

III. DESIGN OF NUI

Following the Human Interface Guidelines [12] for Kinect,
we have designed an NUI as a set of gestures to control the
basic operations in a PowerPoint presentation. We assume the
user to be right-handed and ascribe most of the controls to the
right hand (except when both hands are used). The user faces
the screen and Kinect when she controls the presentation:

Presentation Control gestures are learned and static [12]
and are based on the positions of certain joint-points.

e  Right Hand Raised Gesture (Table I(A)): The user
raises her right hand above the head to start.

e  Both Hands Raised Gesture (Table 1(B)): The user
raises both her hands above the head to end.
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TABLE 1. PRESENTATION, NAVIGATION, AND CURSOR CONTROL
GESTURES. (A) Right Hand Raised TO START (B) Both Hands Raised TO
END (C) Left Swipe TO GO TO NEXT SLIDE (D) Right Swipe TO GO TO
PREVIOUS SLIDE (E) Circle GESTURE TO CAPTURE THE CONTROL OF THE
CURSOR (F) Push GESTURE TO RELEASE THE CONTROL

Navigation Control gesture are innate and dynamic [12].
They are based on the trajectory of the palm movement.

o Left Swipe Gesture (Table I1(C)): The user moves right
hand from right to left to go to next slide.

e  Right Swipe Gesture (Table I(D)): The user moves
right hand from left to right to go to previous slide.

Cursor Control is based on the trajectory of the palm.

e  (Circle Gesture (Table I(E)): To capture the control of
the cursor, the user raises her right hand and draws
a circle in space by moving the open palm facing the
sensor in counter-clockwise (CCW) manner.

e  Cursor Tracking Gesture: Once captured, the cursor
keeps on moving on the slide as the user moves her
open right palm facing the sensor. This can be used
for pointing in slides. This gesture ends with Push.

e  Push Gesture (Table I(F)): To release the cursor, the
user moves her open right palm towards the sensor.

While Circle and Push gestures are learned and dynamic,
Cursor Tracking gesture is innate and continuous [12].

Using the above gestures a user can start a presentation,
navigate between slides, use the cursor as a pointer while she
is at a slide, and finally end the presentation.

IV. GESTURE RECOGNITION SYSTEM

We use various joint-points from the skeleton stream of
Kinect to recognize and track gestures. We use elbow (EL_R
& EL_L) and shoulder (SH_R & SH_L) joints for the Hand
Raised gestures, the joints of the right hand (WR_R (wrist),
EL_R, SH_R) for Swipe, Circle, Track and Push gestures, and
the hip joints (HIP_R & HIP_L) to determine the orientation
of the user relative to Kinect. Based on the characterization of
the projected tracked points we build a separate classifier each
for each gesture. The architecture is shown in Figure 1.

Feature Extraction: Since the joint-points move in a 3D space,
we take their projections on a virtual wall (XY or Y Z plane)
and reduce the problem to 2D tracking. The virtual wall is
computed for a coordinate system attached to the user and
aligned with her orientation so that even if the user is inclined
with respect to Kinect (imaging plane), the projection would
not distort the path being tracked. Without this correction a
circle traced in 3D will become an oblique ellipse after the
projection, if the user is inclined relative to Kinect.
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Fig. 1. Architecture of Gesture Recognition System. Every vertical box runs
in a separate thread and checks for gestures of a class. Every dotted box
depicts a common stage of processing across threads

For the static gesture (Hand Raised), we use the joint-
points directly as features while for the dynamic (or tracking)
gestures (Swipe & Push, Track, and Circle) we use the orien-
tation between consecutive joint-points as features. A simple
rule-based classifier works well for static gestures but we need
a learning-based model (HMM) for tracking gestures.

Hidden Markov Models (HMM) as Gesture Classifiers: To
track the features we consider n consecutive frames to train
and evaluate different HMMs. For stability we use vector quan-
tization of orientation values as code-words. We configure [4]
the HMM'’s in Forward Banded Topology and use Forward
and Backward algorithm for Evaluation, Viterbi algorithm for
Decoding, and Baum-Welch algorithm for Training.

Adaptive Thresholds on Gesture Probabilities: We create a
discrete HMM for each dynamic gesture'. We feed the stream
of code-words simultaneously to all HMM’s. Each HMM, in
turn, returns a likelihood for match. The likelihoods are con-
verted to probabilities by normalization, followed by adaptive
threshold [9] to classify the gestures to the correct class.

A. Data Acquisition and Preprocessing

We have used 5 subjects to build a test data-set for gestures.
Every subject performs each gesture 16 times — correctly 8
times and incorrectly 8 times — to build a data-set of 400 total
gesture actions for 5 gestures. We use this to test our system.
The training gestures are recorded separately.

We first filter the joint-points by Holt Double Exponential
Smoothing [2] to produce smooth tracking. It is controlled
by five parameters, namely, smoothing, correction, prediction,
Jjitter radius and maximum deviation radius. Next we translate

ICompared to a single HMM for all gestures, multiple HMM’s better
preserve the discriminating features of every gesture and have better accuracy.
For every HMM we use 5 parameters — 2 of them structural viz. number of
states and number of distinct observation symbols per state (set as input); and
3 of them canonical viz. state-transition probability distribution, observation
symbol probability distribution, initial state distribution (these are estimated).
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the origin from Kinect to the mid-point of line L (Figure 2)
joining the hip joints (HIP_R & HIP_L) of the user and treat
L the new X-axis. Finally, we compute the orientation of the
user relative to Kinect, the angle between L and the X-axis
of Kinect, and rotate the skeleton about the Y-axis to align.
This ensure a stationary origin and well-behaved projections.
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Fig. 2. Axial rotation for orientation independence. The line L = H1H>
joining Hy (HIP_L) and H2 (HIP_R) defines the axis of alignment.

B. Feature Extraction and Gesture Classification

Gestures for presentation control (Section III) fall into four
classes — Hand Raised, Swipe & Push, Circle, and Track.

Hand Raised Gestures (Table I(A) & (B)) are static. The
trajectory is immaterial as they are well-defined by a set of
rules. Using the 2D joint-points on the virtual wall, the rules
for Right Hand Raised are: (1) WR_R is above EL_R, (2)
EL_R is above SH_R, (3) WR_R is to the left of EL_R, (4)
WR_R is to the right of SH_L, and (5) distance(WR_R, EL_R)
+ distance(EL_R, SH_R) = distance(WR_R, SH_R). We use
rule-based approach to classify these gesture. Both Hands
Raised (Table 1(B)) gesture is implemented similarly.

Swipe and Push Gestures (Table 1 (C) & (D), (F)) are all
defined by near-straight-line trajectories of joint-points. We
first represent the trajectory of the right hand (WR_R), then
encode it as a feature vector (or codeword), and finally
use an HMM to classify. Since the trajectory for all three
gestures is a straight line, specific gestures are distinguished
by distinct representation and encoding processes. To represent
the trajectory, we use the 2D joint-points on the XY plane for
Swipe gestures (Figure 3). Push gesture uses the Y Z plane.
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(a) Left Swipe on XY plane (b) Right Swipe on XY plane

Fig. 3. Projected trajectories of Swipe gestures on virtual wall

To encode the projected trajectory, we use the change
of orientation 6; = tan '[(yr1 —ye)/(wer1 — x0)],t =
1,2,3,--- ,n — 1 between the consecutive points, where n is
the number of frames that the gesture spans and 6; is taken
from the +ve direction of the X—axis. Thus for a Left Swipe,
0, is nearly 180°; while it is nearly 0° for a Right Swipe.

Angle 0, is quantized’ by Naive Vector Quantization
(Figure 4). Hence for a Left Swipe with the sequence of

2This quantization scheme from [4] is rotated CCW by 10° to ensure
stability around the X-axis. Otherwise, Left Swipe or Right Swipe would
Sfluctuate between two different codewords on very small changes of the angle.
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Fig. 4. Naive Vector Quantization. (a) Orientation 6; between (z¢,y¢) and
(zt41,Yyt+1). (b) 18 angular bins (of 20° each) are marked by the central
angles [0°,20°,40°,---,340°] and corresponding codes [0,1,2,---,17].
The range of a bin is taken as =10 around the central angle.

angles as [180°,170°,182°,---,170°,180°, 185°], the feature
vector (codewords) is [9,9,9,---,9,9,9]; while for a Right
Swipe [0°,356°,1°,---,0°,357°,5°] the feature vector would
be [0,0,0,---,0,0,0]. So Right is distinguishable from Lef.

The average length for a Swipe / Push is found to be n =
11 frames. Hence, the last 11 frames are used for its detection.

Circle Gesture (Table I(E)) is complex and is characterized
by: (1) Closed trajectory of WR_R, (2) Arbitrary start-point,
(3) Approximate end-point that is nearby the start-point, (4)
Long duration (1 sec, 3 times Swipe) of about 30 frames at
30 fps, (5) Speed agnostic, (6) Highly dependent on the build
and orientation of the user, (7) Flexibility in its circularity.
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(a) An ideal one with 8 states (b) A real one with several states

Fig. 5. Projections of a Circle gesture

The projection of circle is often noisy (Figure 5). So we
again use Naive Vector Quantization® (Figure 4) to codify them
with minimal noise. Using 30 consecutive frames, we

Step I: Quantize the points using the scheme in Figure 4.
Step 2: Train the HMM (8 states) with multiple gestures.

Step 3: Generate more training sets from cyclic permutations
(for arbitrary start and end points) of the gesture in Step 2.

Step 4: Continually extract the last 30 frames and, using the
HMM, estimate its likelihood of being a circle. Declare a circle
once the likelihood exceeds an adaptive threshold.

Cursor Tracking Gesture: The mouse cursor is grabbed (lock)
with the Circle gesture and released (unlock) by the Push
gesture. Once it has been captured, the cursor can be moved

3Since a circle has 8 symmetric octants, we first attempt to quantize the 30
points of a potential circle into 8 clusters by K-means Clustering. That fails
as the density of points (depending on speed) in every cluster is same and the
seed is indeterminable (start / end of a circle is arbitrary).
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by moving the right hand (WR_R). This gesture is continuous
in nature and is characterized by the lack of any specific
movement pattern. The trajectory is converted to orientation
and streamed as mouse control events to move the cursor.

V. EXPERIMENTS AND RESULTS

We use the C# Accord.Net machine learning frame-
work [1], [15] for HMM implementation and perform several
experiments to tune the configuration of the HMM to arrive
at the best suite of training data, and to determine the optimal
number of states (s) and gesture lengths (n). For example, for
Swipe s =5 & n = 11 and for Circle s =8 & n = 30.

After training, tests are carried out with 400 gesture sam-
ples from 5 gestures performed by 5 subjects. 200 of these are
correctly performed and 200 are incorrectly (unintended or
improper gestures) performed. Table II shows that for a mix
of all gestures for tests, our system has 96.48% precision and
96.00% recall. In Table III, we compare this with Microsoft
Gesture Library (MGL) [10] for Left and Right Swipe gestures
using 400 swipe gesture instances. The precision and recall
values are found to be 82.98% & 97.00% and 95.43% precision
& 94.00% respectively for MGL and our system.

TABLE II. PERFORMANCE OF OUR GESTURE RECOGNITION SYSTEM

Test Case Classified as Correct | Classified as Incorrect
Correct Gesture 192 8
Incorrect Gesture 7 193

TABLE IIL COMPARATIVE PERFORMANCE FOR SWIPES

[ Test Case [ Classified as Correct [ Classified as Incorrect ]

Using Microsoft Gesture Library
[ Correct Gesture [ 194 [ 6 ]
[ Incorrect Gesture [ 37 [ 163 ]
Using Our System
[ Correct Gesture [ 188 [ 12 ]
| Incorrect Gesture | 9 | 191 |

Our system shows a better precision (95.43%) than MGL
(82.98%). Hence, MGL has less capability of handling the
incorrect gestures and often classifies them to some gesture
class, thus having a low precision. We use the adaptive
threshold to avoid this issue. MGL, however, has a higher recall
(97.00% vis-a-vis 94.00%), implying that a correct gesture has
more chances of getting classified to the correct class. We have
traded off on recall to get a very high precision, which is ideal
for gesture recognition because executing a wrong command
is usually worse than missing a command. Thus our system is
less constrained for the user and more natural to use.

VI. CONCLUSION

We present a gestured based control system using Kinect.
This involves the kinematic analysis, modelling and quantiza-
tion of Kinect’s skeletal data to recognize complex gestures.
Instead of complex Gesture Spotting Network [9] to identify
gestures out of the continuous hand motion; we propose a
simpler, yet effective, way to work with the data for gesture
recognition. Depending on the gesture we use either the last
frame or the last 11 or 30 frames to recognize it. We engage a
rule based method or machine learning for recognition. We use
HMM'’s to handle the time series data and classify sequences,
where a gesture can differ in shape and duration.

Our results show 96.48% precision at 94.00% recall with
very low (only 8) false recognition. Hence our system adapts
very well to avoid accidental activation. We compare our
system with MGL [10] to show that we have better precision.
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