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Abstract—Wide area networking infrastructures (WANs), par-
ticularly science and research WANs, are the backbone for mov-
ing large volumes of scientific data between experimental facilities
and data centers. With demands growing at exponential rates,
these networks are struggling to cope with large data volumes,
real-time responses, and overall network performance. Network
operators are increasingly looking for innovative ways to manage
the limited underlying network resources. Forecasting network
traffic is a critical capability for proactive resource management,
congestion mitigation, and dedicated transfer provisioning. To
this end, we propose a nonautoregressive graph-based neural
network for multistep network traffic forecasting. Specifically, we
develop a dynamic variant of diffusion convolutional recurrent
neural networks to forecast traffic in research WANs. We evaluate
the efficacy of our approach on real traffic from ESnet, the
U.S. Department of Energy’s dedicated science network. Our
results show that compared to classical forecasting methods, our
approach explicitly learns the dynamic nature of spatiotemporal
traffic patterns, showing significant improvements in forecasting
accuracy. Our technique can surpass existing statistical and
deep learning approaches by achieving ≈20% mean absolute
percentage error for multiple hours of forecasts despite dynamic
network traffic settings.

I. INTRODUCTION

Large scientific experimental facilities, with high-speed data
production rates, are bringing enormous data movement and
transfer challenges to the underlying network infrastructure
that supports distributed science workflows. With this relent-
less growth, there is a need to develop proactive planning,
resource allocation, and provisioning methods to manage the
current backbone bandwidth of research wide area networks
(R-WANs), while keeping costs low [1]. One of these proactive
strategies could rely on network operators’ ability to forecast
future traffic on the network based on the current state of
the network. For example, if we can forecast the traffic for
several hours in the future, we can minimize the effect of
congestion by diverting flows from congested links to free or
less congested links; similarly, dedicated lines can be assigned
to large transfers so that they do not interfere with other data
transfers. The ability to forecast congestion patterns a few
hours ahead can enable new traffic management strategies with
traditional network protocol design, essentially allowing one
to utilize underused bandwidth more efficiently and minimize
overall congestion in the network infrastructure.

Network traffic forecasting in R-WANs is a formidable task,
owing to a lack of regular patterns in how users access and
perform data transfers over the network [2]. Compared to
Internet WANs, which have periodic patterns [3], R-WANs
have random traffic spikes that are difficult to understand
and anticipate. The traffic on R-WANs depends on which
science experiments and devices are running and which groups
are involved, and it is characterized by high-variability data
transfers lasting minutes or even hours [4].

Network monitoring tools such as Simple Network Manage-
ment Protocol (SNMP), sflow, and netflow [5] allow collecting
traffic information on network nodes and flow transfers as
time-stamped data recording gigabytes of log files (GB).
Most monitoring tools collect data at 30-sec intervals, giving
a fine-grained view that includes other key features such
as protocols used (e.g., TCP, UDP), interfaces, source and
destination IP addresses, and even flow speeds. These data
sets can be leveraged for developing data-driven forecasting
methods. Classical statistical time-series forecasting methods
such as ARIMA and Holt-Winters have been investigated for
network traffic forecasting [6], but have been less effective for
R-WANs, as regular and seasonal patterns do not exist [1].
Forecasting methods based on classical ML methods such as
random forest and SVM have been developed to provide per-
site forecasts [7], but they fail to consider the whole network
and its spatial patterns and connectivity, making them less
robust with respect to the dynamic nature of the R-WAN
traffic [8]. Recent improvements in data collection present
new opportunities for developing deep learning (DL) methods
for forecasting R-WAN traffic [9]. For example, variants of
convolutional neural networks (CNNs) and long-short-term
memory methods (LSTMs) have been shown to provide better
accuracy than classical statistical techniques for data sets
with seasonality [10]. Nevertheless, existing DL methods for
network forecasting are out-of-the-box methods and are not
particularly customized for the R-WAN. They do not take into
account the spatial correlation of the entire network and the
dynamic temporal correlation of R-WANs.

We model the R-WAN networking infrastructure as a graph,
where nodes and edges correspond to sites and their connec-
tivity, modeling network traffic as time series. We propose a
nonautoregressive graph neural network approach to forecast
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traffic for multiple time steps ahead. Specifically, we develop
a dynamic diffusion convolutional recurrent neural network
(DDCRNN) that considers data movement as a diffusion process
from one node to another based on connectivity. The spatial
and temporal correlations are learned through graph diffusion
convolution and recurrent units, respectively. Consequently, a
single model is trained and used to forecast traffic on the
entire R-WAN network. The DDCRNN that we propose is
based on the diffusion convolutional recurrent neural network
(DCRNN), which was originally developed for highway trans-
portation forecasting [11], [12]. The key difference between
the highway traffic DCRNN and our DDCRNN is the way in
which the connectivity between the nodes is considered. In the
DCRNN, the connectivity is static and computed on the basis
of (driving) distance; in DDCRNN, the connectivity is dynamic
and computed on the basis of the current state of the traffic in
the network. This approach is designed to explicitly model the
dynamic nature of the R-WAN traffic. Our main contributions
are as follows:
• We develop a dynamic diffusion graph recurrent neural

network architecture to forecast traffic for multiple time
steps on an R-WAN that is characterized by a lack of
regular patterns and seasonality.

• We demonstrate the effectiveness of the proposed method
on real data from the Energy Sciences Network (ESnet),
a high-performance R-WAN built by the U.S. Department
of Energy (DOE) to support U.S. scientific research. We
show that our approach explicitly learns the dynamic
nature of spatiotemporal traffic patterns in this R-WAN
and outperforms existing statistical and DL methods used
for traffic forecasting by achieving ≈20% mean absolute
percentage error for multiple hours of forecasts.

Using real traffic data from ESnet, our model captures key
patterns among sites and links, highlighting several interesting
behaviors and relationships that were not previously known,
such as some sites having patterns that are more amenable for
forecasting than others.

II. RELATED WORK

Wolski et al. [13] developed a TCP performance network
forecasting method to help schedule computations over dis-
tributed networks. These authors utilized statistical approaches
such as ARIMA, Holt-Winters and Hidden Markov, and were
successful in predicting a few time-steps by modeling traffic
as stochastic processes [14]. Nevertheless, these methods are
dependent on finding seasonality and using it to improve
predictions. Network traffic spikes randomly with sudden
data transfers and lacks seasonal patterns [15], affecting the
forecasting accuracy of these methods [6]. Moreover, these
approaches also fail to learn long-range dependency [16].

Research in software-defined networking (SDN) promises
to provide flexible solutions for building agile networks
and leveraging active monitoring, prediction, and informed
decision-making [17]. Google [18] used SDN to optimize
link usage by doing ”what-if” scenarios to schedule transfers.
Using Multi-Protocol Label Switching, advanced forwarding

schemes can control and optimize flows for packet forwarding
[19]. However, the optimization techniques discussed do not
exploit forecasting algorithms to make decisions.

Most R-WAN network links are underutilized, especially as
routing protocols use path-finding algorithms rather than ac-
counting for current traffic utilization. In prior work, dynamic
congestion-based routing algorithms have been developed to
adapt as traffic changes [20]. However, these algorithms are
susceptible to oscillatory behaviors and performance degrada-
tion, as shown in [21].

The European R&E network, GEANT, used LSTM models
to forecast traffic on European links, but only demonstrated
15-min forecasts [21]. Similarly stacked autoencoders [9] were
used for 15-, 30- and 60-minute forecasts. However, these au-
thors did not use highly dynamic R-WANs such as ESnet and
exploited relatively simpler and shorter forecasts. Recently,
DCRNN implementations, without any modifications, were
successfully applied to forecast congestion events in a WAN
[22]. Network traffic forecasting has explored statistical and
simpler ML models as seen in [6] [7] [8], but prediction
accuracy is seen to suffer because of lack of seasonality in
R-WAN traffic traces.

In this paper, we show that DCRNN alone is not effective,
as it does not consider the dynamic spatial and temporal traffic
patterns in R-WAN networks.

III. U.S. RESEARCH NETWORK: ESNET

The DOE science network ESnet provides services to more
than 50 research sites and universities, including supercom-
puting facilities and major scientific instruments. ESnet also
connects to 140 research and commercial networks, permitting
geography-free collaboration around the world.

We use real traffic traces of two-way traffic data, collected
from all of 2018, across the 48 sites in the U.S. and Europe.
Figure 1 shows the full network topology of the network,
divided among five time zones. All data are collected in GMT.
Sample network traffic patterns on transatlantic links in ESnet
appear in Figure 2, which shows the lack of temporal patterns
in the network traffic.

A. SNMP Data Collection

Network operators monitor link capacity and data movement
across routers using SNMP [23]. Table I shows a snapshot of
these data during a two-way transfer between Sunnyvale and
Sacramento in California.

The traffic is collected in moving GBs across router in-
terfaces at 30-sec intervals. These data are then aggregated
to 1-hour intervals and modeled as discrete observations.
Aggregating traffic compounds the burst patterns [20] and
reduces the model complexity, allowing faster training and
predictions.

The data that we used for our study spans from 1 January
2018 to 31 December 2018, covering 48 sites with 96 traffic
traces of two-way traffic.

While building hourly traffic summaries, we found that
router interfaces sometimes miss recording traffic movements
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Fig. 1: Full topology of ESnet.

Fig. 2: Traffic patterns in January 2018 on all transatlantic
links in ESnet, including London, New York, Amsterdam,
Boston, AOFA, CERN, and Washington, D.C.

Timestamp SACR SUNN in (GB) SACR SUNN out (GB)
1514822400 14110930202 1025131246
1514826000 13453619303 9191557943
1514829600 12168879944 7793842045
1514833200 11231198033 7097237528
1514836800 10780847622 8048293939

TABLE I: Sample timestamped traffic trace collected from one
router collecting traffic in both directions between Sacramento
and Sunnyvale.

at specific intervals. To address this issue, we calculated the
average data values for the missing points from the surround-
ing values to fill in the gaps. These missing values were only
seen in the Washington-Chicago link during a 1-week interval
in November.

IV. DYNAMIC DIFFUSION CONVOLUTION RECURRENT
NEURAL NETWORK

We model the R-WAN as a graph G = (V,E,A), where
V is a set of N nodes that represents the site; E is a set of
directed edges representing the connection between nodes, and
A ∈ RN×N is the weighted adjacency matrix representing the
strength of connectivity between nodes. Given the historical
traffic observations at each node of the graph, the goal is to
learn a function f(.) that takes traffic observations for T ′ time
steps as input to forecast the traffic for the next T time steps:

X(t− T ′ + 1), ..., X(t);G
f(.)−→ X(t+ 1), ..., X(t+ T )

DDCRNN utilizes a graph-based encoder-decoder architec-
ture that models spatial and temporal patterns through dif-
fusion convolution operation on a graph and gated recurrent
units (GRUs), respectively. Specifically, the matrix multiplica-
tion operations of the GRU cell are replaced by a diffusion
convolution operation to perform graph convolution on the
time-series data. A unit in the DDCRNN architecture is given
by:

rt = σ(WrFG[Xt, ht−1] + br)
ut = σ(WuFG[Xt, ht−1] + bu)
ct = tanh(WcFG[Xt(rt � ht−1] + bc)
ht = ut � ht−1 + (1− ut)� ct,

(1)

where Xt and ht denote the input and final state at time t,
respectively; rt, ut, and ct are the reset gate, update gate, and
cell state at time t, respectively; FG denotes the diffusion
convolution operation; and Wr,Wu, and Wc are parameters
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Fig. 3: DDCRNN model architecture. It takes an adjacency matrix computed from the current state of the network traffic among
the sites of the WAN network topology and the traffic as a time-series at each node of the graph. The encoder-decoder deep
neural network is used to forecast the network traffic for mutiple time steps.

of the GRU cell. The diffusion convolution operation [11] on
the graph G and the input data X is defined as:

WFGX =

K−1∑
d=0

(WO(D
−1
O A)d +WI(D

−1
I A)d)X, (2)

where K is a maximum diffusion step; D−1O A and D−1I A are
transition matrices of the diffusion process and the reverse
one, respectively; DO and DI are the in-degree and out-
degree diagonal matrices, respectively, and WO and WI are
the learnable filters for the bidirectional diffusion process.

To model the dynamic nature of the R-WAN traffic,
DDCRNN uses a dynamic weighted adjacency matrix estimated
from the time-series data. Specifically, instead of keeping A
as static, for each input sequence of T ′ time steps on N
nodes (for both training and inference), DDCRNN computes
the linear correlation coefficient values between sites that have
data transfer between them and uses it in Eq. 2. Consequently,
the elements in the adjacency matrix Ã at time T are given
by:

Ãij = ρXi,Xj
=
cov(Xi, Xj)

σXi
, σXj

, (3)

where, Aij represents the edge weight between the nodes Ni

and Nj ; Xi and Xj are the time-series data of nodes Ni and
Nj ; ρ is the Pearson correlation coefficient between Xi and
Xj ; cov is the covariance; σXi

is the standard deviation of
Xi; and σXj is the standard deviation of Xj .

The overall architecture of DDCRNN is shown in Figure 3.
There are two inputs to the DDCRNN model: 1) an adjacency
matrix representing the traffic correlation among the sites of
the WAN network topology and 2) the time-series data or the
traffic statistic at each node of the graph. The encoder of the
DDCRNN network encodes the input into a fixed-length vector
and passes it to the decoder. The decoder forecasts future
traffic conditions. During the training phase, the time series
of T ′ time steps on N nodes is fed in as input; the correlation

matrix is computed on the time-series data and given as
the weighted adjacency matrix for diffusion convolution. The
encoder architecture takes the data and the decoder is used
to forecast the output of the next T time steps. The learnable
weights of DDCRNN are trained using a minibatch stochastic
gradient, using a mean absolute error (MAE) loss function.

The DDCRNN for R-WAN traffic forecasting is based on a
DCRNN that was originally developed for forecasting traffic
on highway networks [11]. The network traffic forecasting is
similar to highway traffic forecasting, where the traffic diffuses
from one node to the other node based on the network graph
connectivity. However, the key difference stems from the spa-
tial connectivity and temporal regularity. In a highway setting,
the traffic exhibits regular patterns across weekdays, peak
hours, regions (i.e., distribution of vehicles going from one
region to another region), and seasons. However, such patterns
cannot be seen in a R-WAN network because users can initiate
large data transfers at any time. Therefore, DDCRNN utilizes a
dynamic adjacency matrix computed from the current state of
the network traffic. During training, DDCRNN learns to diffuse
traffic on the graph under different weighted adjacency matrix
settings. Consequently, during inference, the trained model can
perform forecasts based on the time series of T ′ steps and the
weighted adjacency matrix computed on it.

V. EXPERIMENTS

We used ESnet traffic traces for 1 year with 1-hour time
resolution. We grouped data as follows: from 2018-01-01 to
2018-09-13 for training (70%); from 2018-09-13 to 2018-
10-20 (10%) for validation; and from 2018-10-20 to 2018-
12-31 (20%) for testing. We measured the network traffic
as bandwidth in GB/s. Each site has two bandwidth values:
incoming and outgoing. Therefore, we mapped the 48 physical
sites to a 96-node graph by considering two nodes (incoming
and outgoing) for each physical site, as they have separate
fiber optic links. Since data transfer varies significantly from
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Fig. 4: Pearson correlation coefficient matrix for the 12 nodes.
These nodes exhibit high correlations and are selected for the
exploratory analysis.

site to site, we computed min-max scalar transformation on
the training data and use it normalize bandwidth values of
training, validation, and testing data.

Our DDCRNN implementation is based on the open-source
DCRNN implementation [11]. We used the following hyperpa-
rameter values for DDCRNN: batch size: 64, number of epochs:
30, maximum diffusion steps: 2, number of RNN layers: 2,
number of RNN units per layers: 16, max grad norm: 5,
initial learning rate: 0.01, and learning rate decay: 0.1. These
hyperparameter values were set as default for the open-source
DCRNN implementation.

The DDCRNN training was performed on a single node
of Cooley GPU cluster at Argonne Leadership Computing
Facility. The node consists of two 2.4 GHz Intel Haswell E5-
2620 v3 processors (6 cores per CPU, 12 cores total), one
NVIDIA Tesla K80 (two GPUs per node), 384 GB of RAM
per node, and 24 GB GPU RAM per node (12 GB per GPU).
The software stack comprises Python 3.6.0, TensorFlow 1.3.1,
NumPy 1.16.3, Pandas 0.19.2, and HDF5 1.8.17. The analysis
was run on the Haswell compute nodes of Cori supercomputer
at NERSC where each node has two sockets, and each socket
is populated with a 2.3 GHz 16-core processor (Intel Xeon
Processor E5-2698 v3) and 128GB DDR4 2133MHz memory.

To compare the forecasting accuracy of different models, we
utilize mean absolute percentage error (MAPE) and coefficient
of determination (R2) computed on the original bandwidth
scale (after applying inverse min-max scalar transformation).

A. Exploratory analysis

We conducted an exploratory analysis on DDCRNN to study
the impact of input horizon duration (T ′), forecasting horizon
(T ), and the type of autoregression on the forecasting accuracy.
Given a pair of sites, we computed the Pearson correlation
coefficient between their time series on the training data.
We selected the 12 out of 96 sites based on the strong

correlation values. The correlation matrix of the 12 sites are
shown in Figure 4, where in and out refer to incoming
and outgoing nodes, respectively. The reason for selecting
the subset of nodes is to avoid bias in the experimental
comparison. In particular, if we use all the nodes and select
the best options, then it might introduce bias in favor of the
DDCRNN while comparing it with other methods. For the same
reason, the forecasting accuracy for the exploratory analysis
was computed on the validation data and not on the test data,
thus avoiding test data leakage.

1) Impact of input horizon duration: We studied the impact
of the length of the input horizon (T ′) on the forecasting
accuracy of the DDCRNN. For training DDCRNN, we varied the
length as 6, 12, 18, 24, 30, 36, 42, and 48 hours to forecast
the traffic for the next 24 hours.

The R2 and MAPE values obtained on the validation data
are shown in Table II. For each node, we considered all the
observed and their corresponding predicted values from the
DDCRNN on the validation set and computed R2 and MAPE.
The mean and standard deviation values are computed over 12
nodes. We can observe that, up to 30 hours, the forecasting
accuracy improves as the sequence length increases. However,
after 30 hours, the improvements are not significant. Therefore,
we use an input duration of 30 hours for the rest of the
experiments. Note that a larger input horizons will eventually
increase the training data size and time required for training.

2) Impact of forecasting horizon: We analyzed the impact
of forecasting horizon on DDCRNN performance. Given 30
hours of input horizon, we trained the DDCRNN model to
forecast 6, 12, 18, 24 hours horizon. Note that by training
the DDCRNN model for 24 hours, one can get the forecasting
results for all other horizons. However, this strategy may not be
optimal for 6, 12, or 18 hours forecast. Therefore, we trained
DDCRNN for each forecasting horizon.

Table V shows the R2 and MAPE values for different
forecasting horizons on the validation data. From the results,
as expected, we observe a trend in which the increase in the
forecasting horizon decreases the accuracy. We select 24 hours
as a forecasting horizon for further study, where the DDCRNN
model will be trained to forecast 24 hours. However, we will
analyze the forecasting accuracy for the intermediate time
intervals as well.

3) Comparison between autoregressive and nonautoregres-
sive DDCRNN: We compared the forecasting accuracy of
autoregressive and nonautoregressive DDCRNN variants. By
default, DDCRNN adopts a nonautoregressive approach to fore-
casting. An alternative approach is autoregressive forecasting,
where DDCRNN can be trained to forecast only a one-time
step, which is then given to the model recursively to obtain
forecasting for 24 hours. This study is motivated by a previ-
ous work [24], where autoregressive forecasting was adopted
within LSTM models for traffic forecasting.

Figure 5 shows the distribution of R2 values obtained by
the two strategies at the 24th hour forecast. Figure 6 shows the
distribution of MAPE values for different forecasting horizon
intervals. The result shows that the default nonautoregressive
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Input horizon duration 6hrs 12hrs 18hrs 24hrs 30hrs 36hrs 42hrs 48hrs

R2 (µ) 0.58 0.60 0.70 0.72 0.76 0.69 0.71 0.77
R2 (σ) 0.02 0.09 0.10 0.12 0.07 0.11 0.05 0.08

MAPE (µ) 22.71 22.60 20.90 19.50 19.01 22.38 20.47 20.20
MAPE (σ) 6.16 4.25 6.55 1.74 4.13 8.23 3.37 3.77

TABLE II: Mean (µ) and standard deviation (σ) of R2 and MAPE values for varying input horizon duration.

Forecasting Time Horizon R2 MAPE
µ (σ) µ (σ)

6hrs 0.92 (0.07) 11.31 (8.07)
12hrs 0.82 (0.10) 16.74 (6.35)
18hrs 0.72 (0.11) 20.61 (6.55)
24hrs 0.76 (0.07) 19.01 (4.13)

TABLE III: Mean (µ) and standard deviation (σ) of R2 and
MAPE values for varying forecasting horizon.

Fig. 5: Distribution of R2 values obtained by autoregressive
and nonautoregressive DDCRNN variants for the 24th hour
forecast.

Fig. 6: Distribution of MAPE values obtained by autore-
gressive and nonautoregressive DDCRNN variants for different
forecasting intervals.

(a) Autoregressive forecasting strategy

(b) Nonautoregressive forecasting strategy

Fig. 7: Comparison between autoregressive and nonautoregres-
sive DDCRNN variants on ELPA SUNN in site.

strategy performs significantly better than the autoregressive
strategy. To take a close look, we plot the forecasting accuracy
(R2) of a particular node ELPA SUNN in Figure 7. The
results show that the forecasting accuracy of autoregressive
DDCRNN decreases rapidly with an increase in forecasting time
steps. This can be attributed to the error introduced at each
time step, which drastically reduces accuracy for the next time
step. This issue is less severe in the nonautoregressive strategy
because it was trained on the entire forecasting horizon.

B. Comparison between DDCRNN and DCRNN

Here, we compare the forecasting accuracy of DDCRNN and
DCRNN to show that our dynamic approach that we proposed
is critical for forecasting accuracy. These two methods differ
only with respect to how the weighted adjacency matrix is
used in the diffusion convolution. While in the former it is
dynamically computed based on the current traffic state, in the
latter it is static and based on the connectivity and distance.
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Fig. 8: Distribution of R2 values obtained by DDCRNN and
DCRNN for the 24th hour forecast.

Fig. 9: Distribution of MAPE values obtained by DDCRNN and
DCRNN for different forecasting intervals.

We also note that DCRNN has been applied to network traffic
forecasting previously in [22]. Both DDCRNN and DCRNN
used the same hyperparameters and the same training data
with 96 nodes. We used 30 hours of input horizon to forecast
24 hours of output horizon. The forecasting accuracy values
are computed on the test data.

Figure 8 shows the R2 distribution obtained by DDCRNN and
DCRNN for the 24th hour forecast. Figure 9 shows the MAPE
distribution for different forecasting horizon intervals. We can
observe that DDCRNN achieves forecasting accuracy, which is
significantly better than DCRNN for all forecasting horizons.
The superior performance of DDCRNN can be attributed to its
ability to model the dynamic spatiotemporal traffic patterns;
DCRNN did not have this capability because it uses the static
adjacency matrix, which leads to poor forecasting accuracy.
While a previous work [22] reported superior performance
of the direct application of DCRNN to network traffic, we
hypothesize that it was due to less dynamic traffic data with
shorter forecasting horizon.

C. Comparison of DDCRNN with other methods

Here, we compare DDCRNN with other statistical, machine
learning, and deep learning methods including those previ-
ously studied for network traffic forecasting, and show that
DDCRNN outperforms all these methods.

We used ARIMA [25] (with order (2,1,2) implemented
using statsmodel [26] Python package), linear regression (LR)
[7] (from scikit-learn), Random Forest (RF) [27] (from scikit-
learn with default hyperparameters), Gradient Boosting (GB)
[28] (from scikit-learn with default hyperparameters), Simple
RNN (SRNN) [29] with one hidden layers with 4 neurons (im-
plemented in Keras), LSTM [30], stacked LSTM (SLSTM):
two hidden layers with 256 neurons per layer (implemented
in Keras), Gated Recurrent Unit [31]: one hidden layers with
4 neurons (implemented in Keras), and FireTS [32], [33], a
Python package for multivariate time series forecasting with
linear regression as base estimator, auto-regression order of
24, exogenous order of 24, and exogenous delay of 0. For
each node, we build a node-specific model using each method.
Consequently, for a given method, we have 96 models. For
DDCRNN, we have a single model to forecast the traffic on all
96 nodes. We used 30 hours of input horizon to forecast 24
hours of output horizon. We computed the accuracy values on
the test data.

Figure 10 shows the distribution of R2 obtained by different
methods on the test data for different forecasting intervals (1,
3, 6, 9, 12, and 24 hours). The results show that DDCRNN
achieves forecasting accuracy values that are significantly
higher than all the other node-specific models. At 1st hour
forecast, node-specific models accuracy values are closer to
DDCRNN, however, they become poor with an increase in
the forecasting horizon. Starting from the 3rd hour forecast,
DDCRNN results are significantly better than the node-specific
models. From 6th hour forecast, we can observe that only
DDCRNN has achieved reasonable accuracy. The superior
performance of DDCRNN over node-specific models can be
attributed to the former’s ability to capture both spatial and
temporal patterns using gated recurrent units with diffusion
convolution defined on a dynamic graph.

D. Analysis and characterization

Here, we analyse the forecasting accuracy of DDCRNN and
provide insights on its strengths and limitations.

Table IV shows 10 nodes where DDCRNN obtained best and
worst R2 values, respectively. For each node, we computed
the autocorrelation and partial autocorrealtion values with a
lag of 10 to analyse to what extent the values in the time
series are correlated. Then, we computed the mean of the
obtained autocorrelation values. Table V shows the mean
autocorrelation values for the top three high and low accuracy
nodes. For the same nodes, the autocorrelation and partial
autocorrelation plots are show in Figure 11.

From the results, we observed that nodes, where DDCRNN
obtained high accuracy, exhibit large autocorrelation values.
On the other hand, DDCRNN obtains poor results when there
is no strong temporal correlation, where the traffic is random.
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(a) 1st hour forecasting (b) 3rd hour forecasting (c) 6th hour forecasting

(d) 9th hour forecasting (e) 12th hours forecasting (f) 24th hour forecasting

Fig. 10: Distribution of R2 values obtained on 96 nodes by DDCRNN and other node-specific models for different forecasting
horizon intervals.

S/n High accuracy Low accuracy
1 ANL STAR in BNL NEWY in
2 ANL STAR out ALBQ DENV out
3 SLAC SUNN in CERN-513 WASH in
4 JGI SACR in NASH WASH in
5 FNAL STAR out CERN-513 WASH out
6 BNL NEWY out ATLA ORNL out
7 NERSC SUNN out NASH WASH out
8 NERSC SUNN in ATLA SRS out
9 SLAC SUNN out ATLA NASH in

10 LSVN SUNN out ELPA HOUS out

TABLE IV: Nodes with high and low forecasting accuracy.

Sites Mean ACF Value
High accuracy

ANL STAR in 0.783
SLAC SUNN in 0.974
JGI SACR in 0.842

Low accuracy
BNL NEWY in 0.238
ALBQ DENV out 0.526
CERN-513 WASH in 0.232

TABLE V: Mean autocorrelation values for the top three nodes
with high and low accuracy.

Upon further analysis, we found that nodes with high fore-
casting accuracy such as ANL STAR in, ANL STAR out,
and SLAC SUNN in have large experimental facilities. These
include Argonne National Laboratory, Stanford Linear Ac-
celerator, Joint Genome Institute, and Linac Coherent Light
Source. In these user facilities, the data transfers can happen

any time, however, when a transfer happens, a large volume
of experimental data will be moved to data centers for further
analysis. These transfers can last several hours and thus
exhibit spatial temporal patterns. DDCRNN can learn these
patterns to provide high forecasting accuracy. Specifically, our
analysis reveal that DDCRNN can model short-term transfers,
particularly long connections leading to predictable bulk data
transfers especially driven by these large facilities. With re-
spect to low accuracy nodes, we see a multitude of factors
that prevented DDCRNN from reaching high accuracy over a
long forecasting horizon. For instance, the CERN facility was
shut down most of the year for maintenance which shows no
transfers or very few patterns are picked up to and from the
facility. Additionally, sites such as DENV, BNL, and NASH
run performance tests which consist of very small transfers
that take up less bandwidth. These transfers are so small
that the spatial-temporal patterns are not highly correlated.
Therefore, they are not amenable for modeling and learning
with DDCRNN.

VI. CONCLUSION AND FUTURE WORK

We developed DDCRNN, a dynamic diffusion convolution
recurrent neural network for forecasting traffic bandwidth in
a highly dynamic research wide area network. These traffic
traces show dynamic traffic and lack long term periodic
patterns. Our approach is built on a diffusion convolution
recurrent neural network that models spatial and temporal
patterns using graph diffusion convolution operations within
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(a) ACF for ANL-STAR-in (b) PACF for ANL-STAR-in (c) ACF for SLAC-SUNN-in

(d) PACF for SLAC-SUNN-in (e) ACF for JGI-SACR-in (f) PACF for JGI-SACR-in

(g) ACF for BNL-NEWY-in (h) PACF for BNL-NEWY-in (i) ACF for ALBQ-DENV-out

(j) PACF for ALBQ-DENV-out (k) ACF for CERN513-WASH-in (l) PACF for CERN513-WASH-in

Fig. 11: Autocorrelation (ACF) and partial autocorrelation (PACF) plot showing correlation of observations as a function of
time lag for different sites.

recurrent units. In our approach, the dynamic traffic is explic-
itly captured using a state-specific adjacency matrix computed
from the current traffic state in the network.

We evaluated our approach on real traffic traces from ESnet,
a US research network. Our approach outperformed several
other alternative methods, first, showing that the proposed
DDCRNN achieves higher forecasting accuracy than that of
the static variant. And secondly, it shows that a single-model
can be used to achieve higher forecasting accuracy than the
site-specific models obtained from linear regression, ARIMA,
random forest, gradient boosting, and simple neural network

variants that were previously used for traffic forecasting.

Achieving higher prediction accuracy presents several ad-
vantages to performing informed routing decisions for poten-
tially new flows that could be impacted with regular R-WAN
behavior. Our DDCRNN approach exposes many potentials
to allow informed flow and routing allocations for network
operations, such as scheduling long-running flow on alternative
routes to prevent congestion points for other smaller flows. In
the future, we will couple these decisions with a controller
to test how congestion-free routing will impact the average
utilization of a network in practice.
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